1. (10 points) If $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite show that

$$|a_{i,j}| \le \frac{1}{2} (a_{i,i} + a_{j,j})$$

holds for all $1 \leq i, j \leq n$.

- 2. The Gerschgorin Disk Theorem states that for any $n \times n$ matrix A, every eigenvalue of A lies in at least one of the n circular disks in the complex plane with centers a_{ii} and radii $\sum_{j \neq i} |a_{ij}|$.
 - (a) (5 points) Prove the Gerschgorin Disk Theorem.
 - (b) (5 points) Use the Gerschgorin Disk Theorem to show that all of the eigenvalues of

$$A = \begin{bmatrix} 1 & 10000 \\ 0 & 1 \end{bmatrix}$$

lie on a disk, $\{\lambda : |\lambda - 1| \le 10^4\}$. Do not solve the eigenvalue problem.

(c) (10 points) Find a way to show that the eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 10000 \\ 0 & 1 \end{bmatrix}$$

actually lie on a much smaller disk, $\{\lambda : |\lambda - 1| \le 10^{-4}\}$. Once again, do not solve the eigenvalue problem.

3. Suppose that $A \in \mathbb{C}^{m \times n}$, $m \ge n$, has the block form

$$A = \left(\begin{array}{c} A_1 \\ A_2 \end{array}\right)$$

where $A_1 \in \mathbb{C}^{n \times n}$ is invertible, and $A_2 \in \mathbb{C}^{(m-n) \times n}$ is arbitrary. Let $\sigma_1(A_1)$, $\sigma_1(A_2)$, and $\sigma_1(A)$ be the largest singular values of A_1 , A_2 , and A, respectively. Similarly, let $\sigma_{\min}(A_1)$, $\sigma_{\min}(A_2)$, and $\sigma_{\min}(A)$ be the smallest singular values of A_1 , A_2 , and A, respectively. Show that:

- (a) (10 points) $\sigma_1(A_1) + \sigma_1(A_2) \ge \sigma_1(A) \ge \max \{ \sigma_1(A_1), \sigma_1(A_2) \}.$
- (b) (10 points) $\sigma_{\min}(A_1) + \sigma_1(A_2) \ge \sigma_{\min}(A) \ge \max \{\sigma_{\min}(A_1), \sigma_{\min}(A_2)\} > 0.$

4. Let

$$B = \left(\begin{array}{rrrr} 3 & -6 & 41/5 \\ 0 & 1 & 1 \\ 4 & -8 & 63/5 \end{array}\right).$$

- (a) (10 points) Find the QR decomposition of B using Gram-Schmidt. *Hint: Every* entry in R is an integer!
- (b) (10 points) Write down the unitary Householder reflector matrix that you should multiply against B in order to zero out all but the first entry of its first column.

5. (10 points) Let $T \in C^{n \times n}$ be an upper triangular matrix, and let $\epsilon > 0$. Show that there is a consistent matrix norm $\|\cdot\| : C^{n \times n} \to \mathcal{R}$ depending on T and ϵ such that

 $||T|| \le \rho(T) + \epsilon,$

where $\rho(T)$ is the spectral radius of T.

6. (10 points) Suppose $A = (a_{i,j}) \in \mathcal{R}^{n \times m}$, $n \ge m$, $\operatorname{rank}(A) = m$, and A = QR, where $Q \in \mathcal{R}^{n \times n}$ is orthogonal and $R \in \mathcal{R}^{n \times m}$ is upper triangular. Let

$$\tilde{A} = \begin{bmatrix} A_1 \\ z^T \\ A_2 \end{bmatrix}$$

where $\tilde{A} \in \mathcal{R}^{(n+1) \times m}$, and

$$A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}.$$

What is the QR factorization of \tilde{A} , $\tilde{A} = \tilde{Q}\tilde{R}$, in terms of Q and R, where $\tilde{Q} \in \mathcal{R}^{(n+1)\times(n+1)}$ is orthogonal and $\tilde{R} \in \mathcal{R}^{(n+1)\times m}$ is upper triangular?

7. (10 points) Prove that if $A \in \mathcal{R}^{n \times n}$ is of rank r, then it depends upon r(2n-r) degrees of freedom.

1. (20 points) Let the vector field $f: \mathbb{R}^m \to \mathbb{R}^m$ be divergence free,

$$\nabla \cdot f(y) = \frac{\partial f_1}{\partial y_1} + \dots + \frac{\partial f_m}{\partial y_m} = 0.$$

Show that the following autonomous ODE system preserves volume:

$$y' = f(y), \qquad 0 \le t \le b, \tag{1}$$

$$y(0) = y_0, \tag{2}$$

in the sense that if B(0) is a volume in \mathbb{R}^m , then the set B(t) generated by the evolution of the set B(0) under the flow defined by equations (1) and (2) preserves volume:

Volume(B(t)) = Volume(B(0)),

where $B(t) = \{y(t; y_0) : y_0 \in B(0)\}.$

2. (20 points) Define

$$\binom{s}{j} = \frac{s(s-1)\cdots(s-j+1)}{j!}, \quad \binom{s}{0} = 1,$$

where j is an integer and s is real. Let

$$\gamma_j = (-1)^j \int_0^1 \left(\begin{array}{c} -s \\ j \end{array}\right) ds.$$

Prove that for $m = 0, 1, 2, \ldots$, the following recursive formula for γ_m holds,

$$\gamma_m + \frac{1}{2}\gamma_{m-1} + \frac{1}{3}\gamma_{m-2} + \dots + \frac{1}{m+1}\gamma_0 = 1,$$

where $\gamma_0 = 1$ for m = 0, $\gamma_1 = 1 - \frac{1}{2}\gamma_0$ for m = 1, and so on.

- 3. (10 points) Consider numerical methods for an ODE initial value problem.
 - (a) (2 points) State the definition of consistency of numerical methods.
 - (b) (2 points) State the definition of zero-stability of numerical methods.
 - (c) (2 points) State the definition of convergency of numerical methods.
 - (d) (4 points) Prove that consistency plus zero-stability implies convergence.

4. (a) (5 points) Show that the implicit trapezoidal method is zero-stable for the ODE initial value problem

$$y' = f(t, y), \qquad 0 \le t \le b, \tag{3}$$

$$y(0) = c, \tag{4}$$

where f is assumed to be sufficiently smooth and bounded so that the unique existence of a solution is guaranteed with as many bounded derivatives as needed.

(b) (5 points) Prove that the implicit trapezoidal method is convergent of second-order accuracy.

•

- 5. (a) (5 points) State the definition of A-stability of a numerical method for an ODE initial value problem.
 - (b) (5 points) Show that the backward Euler method is A-stable for

$$y' = f(t, y) \qquad 0 \le t \le b, \tag{5}$$

$$y(0) = c. (6)$$

6. Consider a two-step backward differentiation formula (BDF)

$$y_n + \alpha_1 y_{n-1} + \alpha_2 y_{n-2} = h\beta_0 f_n,$$

where $\beta_0 \neq 0$.

- (a) (5 points) Determine the unknown coefficients α_1 , α_2 and β_0 so that the scheme is second-order accurate.
- (b) (5 points) Show that the above method is indeed of second-order accuracy by computing the local truncation error.

7. (5 points) Use the algebraic characterization of stability of BDFs to show that applying the BDF

$$y_n = y_{n-2} + \frac{1}{3}h(f_n + f_{n-1} + f_{n-2})$$

to $y' = \lambda y$ is unstable when $\lambda < 0$.

8. Consider the family of linear multistep methods

$$y_n = \alpha y_{n-1} + \frac{h}{2}(2(1-\alpha)f_n + 3\alpha f_{n-1} - \alpha f_{n-2}),$$

where α is a real parameter.

- (a) (5 points) Analyze consistency and order of the methods as functions of α , determining the value α^* for which the resulting method has maximal order.
- (b) (5 points) Study the zero-stability of the method with $\alpha = \alpha^*$.

9. (5 points) Formulate the multiple shooting method for the linear problem

$$\mathbf{y}'(t) = A(t)\mathbf{y}(t) + \mathbf{q}(t), \quad 0 \le t \le b,$$
(7)

$$B_0 \mathbf{y}(0) + B_b \mathbf{y}(b) = \mathbf{b},\tag{8}$$

where \mathbf{y} , \mathbf{q} and \mathbf{b} have m components, and A(t), B_0 , and B_b are $m \times m$ matrices.